Flying saucer1 is a transmembrane RING E3 ubiquitin ligase that regulates the degree of pectin methylesterification in Arabidopsis seed mucilage.

نویسندگان

  • Catalin Voiniciuc
  • Gillian H Dean
  • Jonathan S Griffiths
  • Kerstin Kirchsteiger
  • Yeen Ting Hwang
  • Alan Gillett
  • Graham Dow
  • Tamara L Western
  • Mark Estelle
  • George W Haughn
چکیده

Pectins are complex polysaccharides that form the gel matrix of the primary cell wall and are abundant in the middle lamella that holds plant cells together. Their degree of methylesterification (DM) impacts wall strength and cell adhesion since unesterified pectin regions can cross-link via Ca(2+) ions to form stronger gels. Here, we characterize flying saucer1 (fly1), a novel Arabidopsis thaliana seed coat mutant, which displays primary wall detachment, reduced mucilage extrusion, and increased mucilage adherence. These defects appear to result from a lower DM in mucilage and are enhanced by the addition of Ca(2+) or completely rescued using alkaline Ca(2+) chelators. FLY1 encodes a transmembrane protein with a RING-H2 domain that has in vitro E3 ubiquitin ligase activity. FLY1 is orthologous to TRANSMEMBRANE UBIQUITIN LIGASE1, a Golgi-localized E3 ligase involved in the quality control of membrane proteins in yeast. However, FLY1-yellow fluorescent protein (YFP) fusions are localized in punctae that are predominantly distinct from the Golgi and the trans-Golgi network/early endosome in the seed coat epidermis. Wortmannin treatment, which induces the fusion of late endosomes in plants, resulted in enlarged FLY1-YFP bodies. We propose that FLY1 regulates the DM of pectin in mucilage, potentially by recycling pectin methylesterase enzymes in the endomembrane system of seed coat epidermal cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PME58 plays a role in pectin distribution during seed coat mucilage extrusion through homogalacturonan modification.

Pectins are major components of plant primary cell walls. They include homogalacturonans (HGs), which are the most abundant pectin and can be the target of apoplastic enzymes like pectin methylesterases (PMEs) that control their methylesterification level. Several PMEs are expressed in the seed coat of Arabidopsis thaliana, particularly in mucilage secretory cells (MSCs). On the basis of public...

متن کامل

SALT-OVERLY SENSITIVE5 Mediates Arabidopsis Seed Coat Mucilage Adherence and Organization through Pectins.

Interactions between cell wall polymers are critical for establishing cell wall integrity and cell-cell adhesion. Here, we exploit the Arabidopsis (Arabidopsis thaliana) seed coat mucilage system to examine cell wall polymer interactions. On hydration, seeds release an adherent mucilage layer strongly attached to the seed in addition to a nonadherent layer that can be removed by gentle agitatio...

متن کامل

PECTIN METHYLESTERASE INHIBITOR6 promotes Arabidopsis mucilage release by limiting methylesterification of homogalacturonan in seed coat epidermal cells.

Imbibed seeds of the Arabidopsis thaliana accession Djarly are affected in mucilage release from seed coat epidermal cells. The impaired locus was identified as a pectin methylesterase inhibitor gene, PECTIN METHYLESTERASE INHIBITOR6 (PMEI6), specifically expressed in seed coat epidermal cells at the time when mucilage polysaccharides are accumulated. This spatio-temporal regulation appears to ...

متن کامل

The ubiquitin receptor DA1 interacts with the E3 ubiquitin ligase DA2 to regulate seed and organ size in Arabidopsis.

Seed size in higher plants is determined by the coordinated growth of the embryo, endosperm, and maternal tissue. Several factors that act maternally to regulate seed size have been identified, such as auxin response factor2, apetala2, KLUH, and DA1, but the genetic and molecular mechanisms of these factors in seed size control are almost totally unknown. We previously demonstrated that the ubi...

متن کامل

The pepper E3 ubiquitin ligase RING1 gene, CaRING1, is required for cell death and the salicylic acid-dependent defense response.

Ubiquitination is essential for ubiquitin/proteasome-mediated protein degradation in plant development and defense. Here, we identified a novel E3 ubiquitin ligase RING1 gene, CaRING1, from pepper (Capsicum annuum). In pepper, CaRING1 expression is induced by avirulent Xanthomonas campestris pv vesicatoria infection. CaRING1 contains an amino-terminal transmembrane domain and a carboxyl-termina...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 25 3  شماره 

صفحات  -

تاریخ انتشار 2013